Separation of Δ^8 and Δ^9 THC Metabolites and Other Cannabinoids in Urine

UCT Part Numbers

SSHLB066

Styre Screen® HLB 60 mg, 6 mL

SCS27-PFP1021

SelectraCore® PFPP Column 100 x 2.1 mm, 2.7 μm

SCS27-PFPGDC21

SelectraCore® PFPP Guard Column 5 x 2.1 mm, 2.7 µm

SLGRDHLDR-HPOPT

Selectra® Direct Connect Guard Holder

SPHPHO7001-10

Select pH buffer pouch 100 mM Phosphate buffer pH 7.0

Introduction:

In recent years, there has been a notable increase in the use and commercialization of Δ^8 -THC products. This increase stems from the passing of the Farm Bill of 2018 which legalized hemp. The main cannabinoid of hemp is CBD which can be converted into Δ^8 -THC [1]. This resulted in drug testing laboratories, needing to be able to separate parent THC isomers Δ^8 and Δ^9 -THC. However, tetrahydrocannabinol (THC) is extensively metabolized by the body into 11-nor-9-carboxy-THC (COOH-THC) and 11-hydroxy-THC (OH-THC). Therefore, quantitation and identification of THC's metabolites are critical for proper identification and interpretation. The newest challenge many laboratories face is the separation of the isomeric metabolites. Δ^8 -COOH-THC and Δ^9 -COOH-THC can be separated on a core-shell C18 column; however, Δ^8 -OH-THC and Δ^9 -OH-THC continue to be a challenge.

Additionally, with the expanding cannabis market, new cannabinoids continue to emerge. One example includes Δ^{10} and $\Delta^{6a,10a}$ -THC which occur naturally in marijuana at low levels but can be artificially synthesized to obtain higher concentrations [2]. THC-O-Acetate (THC-O) is a new semi-synthetic cannabinoid that is synthesized by adding acetic anhydride to THC [3]. These three examples are included in the panel with other emerging cannabinoids.

This application note introduces an LC-MS/MS method that separates 16 cannabinoids using UCT's SelectraCore® PFPP column. This includes the separation of the isomeric metabolites of Δ^8 and Δ^9 THC. A solid phase extraction from urine is also introduced using UCT's Styre Screen® HLB column.

SPE Extraction:

Sample Preparation: 1 mL urine sample + ISTD + 1 mL ACN + 1 mL of 100 mM phosphate buffer pH 7.0, vortex

Note: Include a hydrolysis procedure to recover conjugated analytes.

Condition:

1 x 3 mL MeOH 1 x 3 mL 100 mM phosphate buffer pH 7.0

Load:

Load sample and aspirate 1-2 mL/min

Wash:

1 x 3 mL DI H₂O 1 x 3 mL 40:60 MeOH: DI H₂O

Dry Column:

Dry for at least 10 minutes

Elute:

1 x 3 mL of 60:40 MeOH:Hexane *make elution solvent daily and shake/vortex well before use

Evaporate:

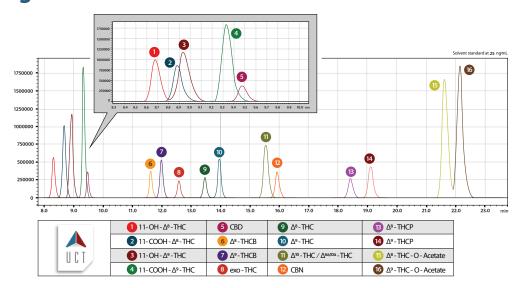
Evaporate samples to dryness at 10 psi and 40°C

Reconstitute:

Reconstitute samples in 1 mL of 45:55 MeOH:DI H₂O or other appropriate solvent and volume

Instrument Parameters						
LC-MS/MS System	Shimadzu Nexera LC-30AD with MS-8050					
UHPLC Column	SelectraCore® PFPP Column 100 x 2.1 mm, 2.7 μm (PN: SCS27-PFP1021)					
Guard Column	SelectraCore® PFPP Guard Column 5 x 2.1 mm, 2.7 μm (PN:SCS27-PFPGDC21)					
Column Temperature	35°C					
Flow Rate	0.3 mL/min					
Injection Volume	10 μL					
Mobile Phase A	5 mM Ammonium Formate + 0.1% Formic Acid in DI H₂O					
Mobile Phase B	Methanol					

Gradient							
Time (min)	Mobile Phase A (%)	Mobile Phase B (%)					
0	55	45					
6	30	70					
19-24.5	36	74					
24.6-27.6	55	45					


MRM Table									
Analyte	R.T. (min)	Parent Ion (m/z)	Product Ion 1 (m/z)	CE (V)	Product Ion 2 (m/z)	CE (V)			
11-OH-Δ ⁸ -THC	8.67	330.7	313.1	-16	201.0	-26			
11-COOH-Δ ⁸ -THC	8.87	344.7	299.2	-21	327.2	-18			
11-OH-Δ ⁹ -THC	8.93	300.9	313.2	-15	267.2	-20			
11-COOH-Δ ⁹ -THC	9.33	344.9	327.2	-17	299.2	-19			
CBD	9.47	314.9	193.2	-23	123.1	-35			
Δ ⁸ -THCB	11.61	301.1	179.3	-22	123.0	-35			
Δ ⁹ -THCB	11.98	301.1	179.1	-24	23.0	-32			
exo-THC	12.58	314.7	193.1	-24	123.0	-33			
Δ ⁸ -THC	13.47	314.9	193.1	-23	123.1	-35			
Δ ⁹ -THC	Δ ⁹ -THC 13.95		193.1	-24	123.1	-35			
Δ^{10} / $\Delta^{6a,10a}$ -THC	15.54	314.9	193.25	-24	123.1	-37			
CBN	15.90	311.2	223.2	-21	293.2	-16			
Δ ⁸ -THCP	18.41	342.7	221.1	-25	122.9	-35			
Δ ⁹ -THCP	19.10	342.7	221.1	-24	123.0	-35			
Δ ⁸ -THC-O-Acetate	21.62 356.7		315.2	-18	193.1	-30			
Δ ⁹ -THC-O-Acetate	22.15	356.7	315.2	-17	193.1	-29			



Chromatogram:

Calibration Curves:

*Example 7 point solvent calibration curves with linear equation and r 2 value [1, 2.5, 5, 10, 25, 50, 100 ng/mL]

Results									
Urine n=3	5 ng/mL			2	25 ng/mL		50 ng/mL		
	Recovery	Matrix Effects	RSD	Recovery	Matrix Effects	RSD	Recovery	Matrix Effects	RSD
11-OH-Δ ⁸ -THC	104%	-20%	3%	83%	-6%	11%	88%	-3%	10%
11-COOH-Δ ⁸ -THC	99%	-16%	4%	83%	-4%	8%	84%	-1%	6%
11-OH-Δ ⁹ -THC	99%	-11%	2%	83%	0%	14%	86%	6%	8%
11-COOH-Δ ⁹ -THC	105%	-21%	13%	82%	-9%	10%	86%	-8%	8%
CBD	118%	-24%	6%	85%	-12%	8%	85%	-7%	8%
Δ ⁸ -THCB	106%	-14%	4%	85%	-8%	11%	83%	4%	8%
Δ ⁹ -THCB	106%	-18%	4%	84%	-9%	13%	84%	7%	9%
exo-THC	104%	-8%	7%	86%	-1%	15%	84%	4%	9%
Δ ⁸ -THC	108%	-13%	5%	87%	2%	13%	86%	6%	7%
Δ ⁹ -THC	106%	-20%	3%	86%	3%	10%	84%	7%	9%
Δ^{10} -THC/ $\Delta^{6a,10a}$ -THC	110%	14%	2%	83%	25%	9%	90%	11%	6%
CBN	97%	-2%	3%	80%	5%	13%	78%	3%	7%
Δ ⁸ -THCP	111%	-15%	4%	85%	-4%	11%	83%	-2%	9%
Δ ⁹ -THCP	109%	-16%	2%	88%	-7%	10%	85%	-6%	9%
Δ ⁸ -THC-O-Acetate	117%	-13%	1%	95%	-8%	3%	87%	-11%	3%
Δ ⁹ -THC-O-Acetate	117%	-19%	1%	96%	-16%	4%	90%	-3%	4%

^{*}Recoveries were calculated using a pre and post-spiked sample technique. Matrix effects were calculated by comparing post-spiked and solvent standards.

Conclusion:

UCT's SelectraCore® PFPP column and methanol as mobile phase B proved to be the best combination to achieve separation of the four isomeric metabolites. This method separated a total of 16 cannabinoids. The PFPP column was not able to separate Δ^{10} -THC and $\Delta^{6a,10a}$ -THC. Additionally, baseline separation of the THC-O-Acetate isomers were also not achieved. Analytes were extracted from urine utilizing UCT's Styre Screen® HLB solid phase extraction column. After optimization, the extraction's recovery, matrix effect, and relative standard deviation were evaluated at three concentrations (5, 25, 50 ng/mL). Recoveries for all analytes were acceptable, above 75% (range 78-118%). Matrix effects and relative standard deviations were within ANSI/ASB Standard 063 guidelines. Matrix effects were within \pm 25% and the RSDs were less than 20% (range 1-15%).

References:

[1] "5 Things to Know about Delta-8 Tetrahydrocannabinol – Delta-8 THC." U.S. Food and Drug Administration, 4 May 2022, www.fda.gov/consumers/consumer-updates/5-things-know-about-delta-8-tetrahydrocannabinol-delta-8-thc.

[2] Mallen, Briana. "Is Delta 10 Natural or Synthetic?" Secret Nature, 1 Sept. 2021, <u>secretnaturecbd.com/blogs/cbd/is-delta-10-natural-or-synthetic.</u>

[3] Alaina K Holt and others, Δ^8 -THC, THC-O Acetates and CBD-di-O Acetate: Emerging Synthetic Cannabinoids Found in Commercially Sold Plant Material and Gummy Edibles, Journal of Analytical Toxicology, Volume 46, Issue 8, October 2022, Pages 940–948, https://doi.org/10.1093/jat/bkac036

