Determination of 16 Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in Food using Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)

UCT Part Numbers

ECMPSCB15CT 15mL dSPE tube with 900mg MgSO4, 300mg PSA and 150mg GCB Or

ECMPSCB-MP Mylar Pouch with 900mg MgSO4, 300mg PSA and 150mg GCB ECMSSCFS-MP Mylar pouch containing 6g MgSO4 and 1.5g NaCl

Summary:

Per- and polyfluoroalkyl substances (PFASs) are a diverse group of synthetic organofluorine compounds that have been widely used in industrial applications and consumer products such as non-stick cookware, food packaging, fire-fighting foams, carpeting, apparels and metal plating. PFASs are persistent in the environment and are extremely resistant to degradation due to heat, acids or bases. They are also bioaccumulative in humans and wildlife and are known to cause reproductive and developmental toxicity in laboratory animals and wildlife.

This application note summarizes a validated procedure developed by the US Food and Drug Administration (FDA) for the measurement of 16 PFASs in food using a QuEChERS sample preparation approach and LC-MS/MS analysis. Representative food matrices tested include milk, bread, lettuce, and fish. Due to the extremely low concentrations of detection required for this analysis, the choice of MS instrumentation is critical to hit necessary cutoff concentrations. In some cases, further clean-up using solid-phase extraction may be required (e.g. using EnviroClean® WAX SPE cartridges, p/n ECWAX126-P). The agency reports that the method's release is "an important step in furthering collaboration between the FDA and states in assessing the safety of human and animal food from specific areas potentially affected by environmental contamination". Complete method details, including instrumental parameters and validation criteria/results, can be found on the FDA website (https://www.fda.gov/media/131510/download).

List of Analytes Covered in Method:

Acronym	Name	CAS	Formula	MW
PFBA	Perfluorobutanoic acid	375-22-4	C4F7O2	214
PFPeA	Perfluoropentanoic acid	2706-90-3	C5HF9O2	264
PFHxA	Perfluorohexanoic acid	307-24-4	C6HF11O2	314
PFHpA	Perfluoroheptanoic acid	375-85-9	C7HF13O2	364
PFOA	Perfluorooctanoic acid	335-67-1	C8HF15O2	414
PFNA	Perfluorononanoic acid	375-95-1	C9HF17O2	464
PFDA	Perfluorodecanoic acid	335-76-2	C10HF19O2	514
PFBS	Perfluorobutanesulfonic acid	375-73-5	C4HF9O3S	300
PFPeS	Perfluoropentanesulfonic acid	2706-91-4	C5HF11O3S	350
PFHxS	Perfluorohexanesulfonic acid	355-46-4	C6HF13O3S	400
PFHpS	Perfluoroheptanesulfonic acid	375-92-8	C7HF15O3S	450
PFOS	Perfluorooctanesulfonic acid	1763-23-1	C8HF17O3S	500
NaDONA	Sodium dodecafluoro-3H-4, 8-diox- anonanoate	958445-44-8	C7H5F12NO4	395
HFPO-DA	2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3- heptafluoropropoxy) propanoic acid (GenX)	62037-80-3	C6HF11O3	330
9CI-PF3ONS	Potassium 9-chlorohexadecafluoro-3- oxanonane-1-sulfonate	73606-19-6	C8CIF16KO4S	570
11CI-PF3OUdS	CI-PF3OUdS 11-chloroeicosafluoro-3-oxaundec- ane-1- sulfonic acid		C10HCIF20O4S	632

Internal Standard/Surrogates					
Acronym	Name				
d5N-EtFOSAA	N-ethyl-d5-perfluoro-1-octanesulfonamidoacetic acid (internal standard)	590			
M3 PFBA	Perfluoro-n-[2,3,4-13C3] butanoic acid	217			
MPFHxA	Perfluoro-n-[1,2-13C2] hexanoic acid	316			
13C PFOA	Perfluoro-n-[13C8] octanoic acid	422			
M3 PFBS	Sodium perfluoro-1-[2,3,4-13C3] butane sulfonate	303			
MPFHxS	Sodium perfluoro-1-hexane[18O2] sulfonate	404			
13C PFOS	Sodium perfluoro-[13C8] octane sulfonate	508			
M3 HFPO	2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)-13C3-propanoic acid	333			

Precautions:

- PFAS chemicals are prevalent in all laboratory environments and special care must be taken to prevent false positives due to accidental and/or routine laboratory contamination.
- Only LC-MS grade solvents should be used unless otherwise noted in the procedure below. All solvents
 and complete method blanks should be analyzed on the LC-MS/MS instrument prior to sample analysis.
 If PFAS compounds are determined, complete method blank results should be subtracted from
 samples. Complete method blanks should be performed and analyzed daily, preferably in the same
 instrument sequence as the samples. Sources of potential contamination during sample preparation
 include; solvents, syringe filters, centrifuge tubes, dSPE sorbents, septa, and others.
- A delay column should be used between the mobile phase mixer and sample injector to temporarily trap any system related interferences, which results in their elution at a later retention time than the analyte. This eliminates contamination from instrument tubing, mobile phase solvents, and solvent bottles.
- The analyte 11Cl-PF3OUdS exhibits known issues with recovery in certain matrices, which may reduce the confidence in this result in certain food types.

SPE Procedure:

Sample Extraction:

The edible portion of the food sample is collected and homogenized using an IKA tube mill with a disposable 100 mL polypropylene grinding chamber (an alternative homogenizer may also be used for this step). Samples are ground at 5000 rpm for approximately 2 minutes. The minimum sample size for analysis is 5 grams.

- 1. Add amount of sample and LC/MS grade water based on Table 1 and commodity type to a 50 mL polypropylene (PP) centrifuge tube.
- 2. Add 10 μ L of 1 μ g/mL isotopically labeled surrogate standard solution to the sample.
- 3. Add 10 mL acetonitrile and 150 μL formic acid to the 50 mL PP conical centrifuge tube.
- 4. Shake vigorously for 1 minute.
- 5. Add QuEChERS salt packet (ECMSSCFS-MP) and shake for 5 minutes.
- Glas-Col® digital pulse vortexer at 1500 rpm with pulse set to 70
- 6. Centrifuge the samples at 10000 rcf for 5 minutes.

Sample Clean-up:

- 1. Transfer supernatant to a 15 mL dSPE tube (ECMPSCB15CT).
- 2. Vortex/shake for 2 minutes.
- 3. Centrifuge the samples at 10000 rcf for 5 minutes.
- 4. Filter 5 mL of the extract with a 0.2 µm nylon syringe filter and transfer to a 15 mL conical centrifuge tube.
- 5. Add Internal Standard:

For samples that <u>do not</u> require nitrogen concentration: Add 5 μ L of 1 μ g/mL d5-N-EtFOSAA internal standard solution to the 5 mL extract to give a final concentration of 1 ng/mL. Surrogates will also have a final concentration of 1ng/mL in the final extract. For samples <u>that require</u> nitrogen concentration: Concentrate to near dryness with nitrogen and reconstitute to 0.5 mL with methanol. Add 5 μ L of the 1 μ g/mL d5-N-EtFOSAA internal standard solution to give a final concentration of 10 ng/mL in solution. Surrogates will also have a final concentration of 10 ng/mL in

- 6. Briefly vortex/shake
- 7. Transfer sample to a polypropylene autosampler vial for analysis by LC-MS/MS.

Table 1. Sample Preparation Conditions Based on Food Commodity Type							
Commodity	Sample Amount	Water Added (mL)	ACN Added (mL)	Concentrate to Dryness			
Fruits & Vegetables	5 g	5	10	No			
Bread	5 g	15	10	No			
Milk	5 mL	5	10	Yes – take 5mL of extract to 0.5 mL			
Cheese	1 g	5	10	No			
Other Dairy	5 g	5	10	No			
Meat	5 g	5	10	No			

Additional SPE Cleanup Procedure (Optional):

Due to the complexity of food samples and the possibility of matrix interferences, any samples with a positive detection above the method detection limit for any compound were run through an additional SPE clean-up step following the initial QuEChERS protocol.

SPE Procedure:

NOTE: The original FDA method employed the use of Strata[™]-XL-AW 100 µm Polymeric Weak-Anion 200 mg / 3 mL (Phenomenex, Torrance, CA) SPE cartridges. However, any equivalent polymeric weak-anion exchange column can be used as an alternative. UCT's equivalent for this chemistry and configuration is noted below.

- 1. Take 1 mL of filtered QuEChERS extract and dilute to approximately 15 mL with LC/MS grade water in a clean 15 mL mL polypropylene (PP) centrifuge tube.
- 2. Condition a Enviro-Clean® WAX SPE cartridge (ECWAX126-P, 200 mg/ 6mL) with 9 mL of 0.3% ammonium hydroxide in acetonitrile.
- 3. Load sample onto SPE cartridge and let pass through slowly (apply a low vacuum if necessary).
- 4. Wash cartridge with 5 mL of LC/MS grade water.
- 5. Dry cartridge for approximately 1 minute.
- 6. Elute sample with 4 mL of 0.3% ammonium hydroxide in acetonitrile.
- 7. Evaporate sample to near dryness.
- 8. Reconstitute to 1 mL with methanol and transfer to a polypropylene autosampler vial for analysis by LC-MS/MS.

Results:

A level 2 single lab validation was conducted under the Guidelines for the Validation of Chemical Methods for the FDA FVM Program 2nd Ed. A total of 4 different types of foods and beverages were evaluated. These include produce, milk, fish, and bread. The method was validated at 6 concentrations (0.05, 0.15, 0.5, 1.5, 2, 5 ng/mL) in 4 food matrices. Acceptable recovery ranges for these compounds based on the FDA guidelines for the validation of chemical methods is 40-120% for concentrations spiked at 1 ng/mL. All compounds were within the acceptable range, except for 11CI-PF3OUdS in bread samples which were on the lower side at 26-42% recovery.

References:

[1] FDA Foods Program Compendium of Analytical Laboratory Methods: Chemical Analytical Manual (CAM); method number C-010.01; Determination of 16 Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in Food using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS); Susan Genualdi and Lowri deJager, CFSAN/ ORS/DAC/MDB; <u>https://www.fda.gov/media/131510/download</u>

0203-01-01 UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 800.385.3153 • 215.781.9255 www.unitedchem.com Email: methods@unitedchem.com ©UCT, LLC 2020 • All rights reserved

