Using a QuEChERS Approach for the Determination of Pesticide Residues In Soil

UCT Part Numbers

ECQUEU750CT-MP

4g MgSO₄, 1g NaCl, 0.5g Na₂HCitr.1.5H₂O, and 1g Na₃Citr.2H₂O

SLC-1800ID21-3UM

Selectra® C18 HPLC column 100 × 2.1 mm, 3 μm

ECQUSF24CT

150 mg MgSO₄, 50 mg PSA, and 50 mg C18

SLC-18GDC20-3UM

Selectra® C18 guard cartridge, 10×2.1 mm, 3 µm

SLGRDHLDR-HPOPT

Guard cartridge holder

Summary:

The use of pesticides in agriculture and households is widespread. To ensure food safety and prevent the unnecessary exposure of consumers to pesticides it is important to test for these residues in surveillance plans. While the greatest source of pesticide exposure comes from residues that remain in final food products, they can also be found in environmental samples such as water and soil. As a consequence, any pesticides that are present in soil can potentially be incorporated into growing crops. Contaminated soil also represents a serious environmental problem as the pesticides can be transported to other environmental systems such as ground water and air.

Due to the wide range of pesticides used in agriculture, the development of fast multi-residue methods that simultaneously determine a wide range of pesticides is essential. One of the most widely used multi-residue methodologies is the QuEChERS approach. This offers many advantages including speed, cost, ease of use, good performance characteristics and wide applicability range (matrices and analytes).

Soil is a complex matrix consisting of organic and inorganic material. It possesses many active sites (polar, non-polar and ionic) that are capable of retaining pesticides and other residues. Compared to other matrices commonly encountered in pesticide residue analysis (e.g. fruits and vegetable), soil samples are more difficult to extract and require longer extraction times due to the stronger interactions that may occur between the soil and the pesticides.

The aim of this study was to evaluate the effectiveness of the QuEChERS extraction and cleanup approach for the analysis of pesticides in soil. 21 pesticides, comprising various chemical properties, were used for the study. LC-MS/MS was used for detection and quantitation.

QuEChERS Procedure:

1. Sample Extraction

- a) Weigh 10g soil sample (≥70% H₂O content) into a 50 mL centrifuge tube. Alternatively, weigh 3g air-dried soil sample into a 50 mL tube and add 7 mL H₂O, vortex briefly, and allow to hydrate for 30 min.
- b) Add 10 mL of acetonitrile to each sample.
- c) Shake (manually or mechanically) or vortex samples for 5 min to extract pesticides. (In this study a Spex SamplePrep Geno/Grinder 2010 operated at 1500 rpm was used).
- d) Add the contents of an ECQUEU750CT-MP Mylar pouch (citrate buffered salts) to each centrifuge tube.
- e) Immediately shake samples for at least 2 min.
- f) Centrifuge for 5 min at ≥3000 rcf.

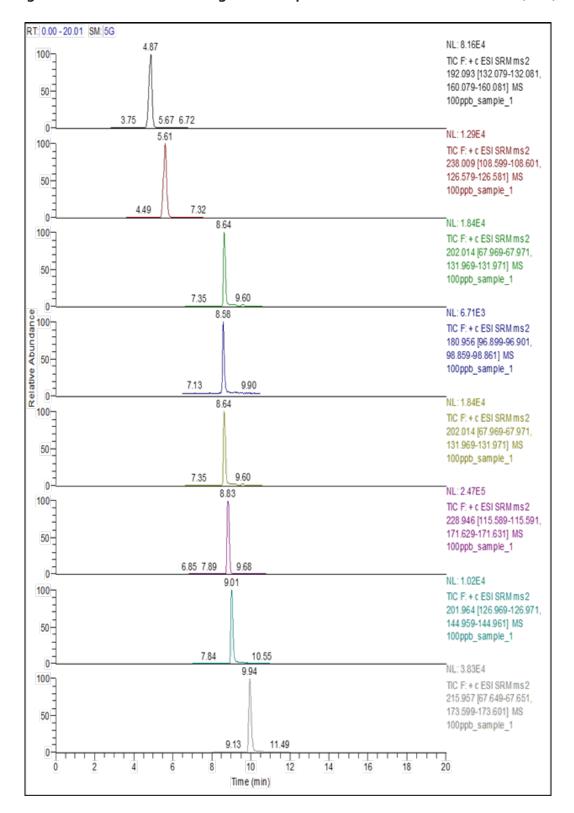
2. dSPE Clean-up

- a) Transfer 1 ml of supernatant to a SpinFiltr® (CUMPSC18CT).
- b) Vortex the sample for 30 seconds.
- c) Centrifuge the sample at \geq 5000 rcf for 2 minutes.
- d) Transfer the purified and filtered sample extract into an autosampler vial for analysis.

Note: It is possible for certain compounds to be covalently bound to the soil. These bound residues can only be removed using an acid or base hydrolysis step prior to extraction. However, if a hydrolysis step is employed, this may have a detrimental effect on pH sensitive analytes.

LC-MS/MS Parameters:

HPLC Conditions						
HPLC System	Thermo Scientific™ Dionex™ Ultimate™ 3000					
HPLC Column	UCT Selectra® C18, 100 × 2.1 mm, 3 μm (p/n: SLC-18100ID21-3UM)					
Guard Column	UCT Selectra® C18, 10 × 2.1 mm, 3 μm (p/n: SLC-18GDC20-3UM))					
Guard Column Holder	p/n: SLGRDHLDR					
Column Temperature	40 °C					
Flow Rate	300 μL/min					
Injection Volume	3 μL					
Autosampler	10 °C					
Wash Solvent	MeOH:ultrapure water (1:1, v/v)					
Mobile Phase A	0.1% ammonium formate + 0.3% formic acid					
Mobile Phase B	methanol + 0.1% formic acid					
Run Time	25 min (including 5 min re-equilibration)					


MS Conditions							
Instrumentation	Thermo Scientific™ TSQ Vantage™ tandem mass spectrometer						
Ionization mode	ESI ⁺						
Spray voltage	4500 V						
Vaporizer temperature	450°C						
Capillary temperature	225°C						
Sheath gas pressure	55 arbitrary units						
Auxiliary gas pressure	25 arbitrary units						
lon sweep gas	0 arbitrary units						
Declustering potential	0 V						
Q1 and Q3 peak width	0.2 and 0.7 Da						
Collision gas	argon						
Collision gas pressure	1.5 mTorr						
Acquisition method	EZ method (SRM)						
Cycle time	1 sec						

MS Parameters and Retention Times									
Analyte	RT	Parent ion	Product 1	CE 1	Product 2	CE 2			
Carbendazim	4.9	192.09	132.08	29	160.08	17.00			
Dicrotophos	5.6	238.01	108.60	33	126.58	17.00			
Thiabendazole	8.6	202.06	131.06	31	175.07	24.00			
DIMP	8.6	180.96	96.90	12	98.86	14.00			
Simazine	8.6	202.01	67.97	32	131.97	17.00			
Tebuthiuron	8.8	228.95	115.59	26	171.63	17.00			
Carbaryl	9.0	201.96	126.97	29	144.96	6.00			
Atrazine	9.9	215.96	67.65	35	173.60	16.00			
DEET	10.1	191.95	90.66	28	118.63	15.00			
Pyrimethanil	11.0	199.99	106.97	23	183.00	22.00			
Malathion	12.3	331.01	98.57	23	126.86	12.00			
Acetochlor	13.3	269.96	148.02	15	223.98	10.00			
Cyprodinil	13.6	226.12	77.03	40	93.05	33.00			
Tebuconazole	14.2	308.01	69.66	29	124.56	35.00			
Diazinon	14.3	304.99	153.04	16	169.02	16.00			
TPP	14.4	327.09	77.02	37	152.07	33.00			
Zoxamide	14.4	335.92	158.91	36	186.91	19.00			
Pyrazophos	14.7	374.10	194.06	20	222.13	20.00			
Profenofos	15.7	372.89	127.92	41	302.79	17.00			
Chlorpyrifos	16.4	349.70	96.81	29	197.76	20.00			
Abamectin	17.6	889.98	304.92	25	751.21	35.00			
Bifenthrin	18.2	440.04	165.21	39	180.42	11.00			

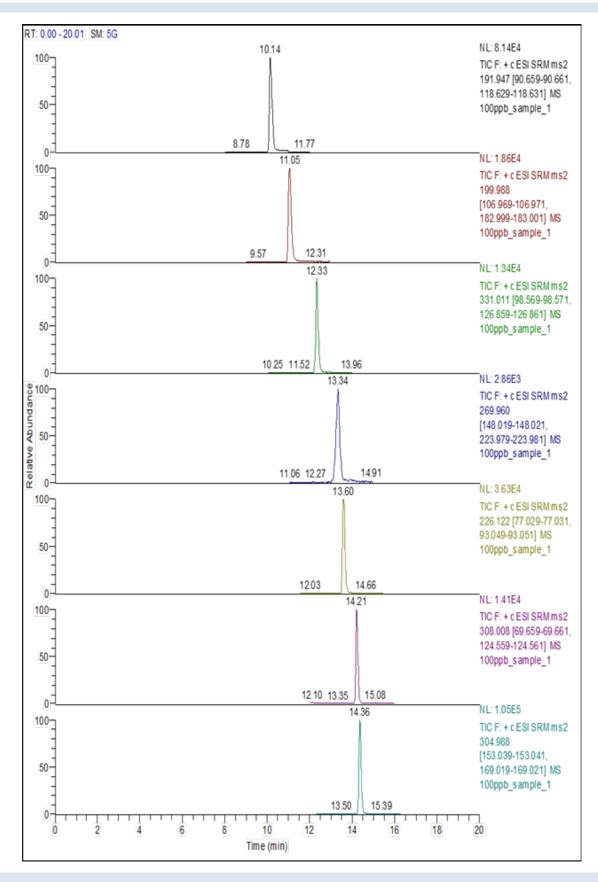
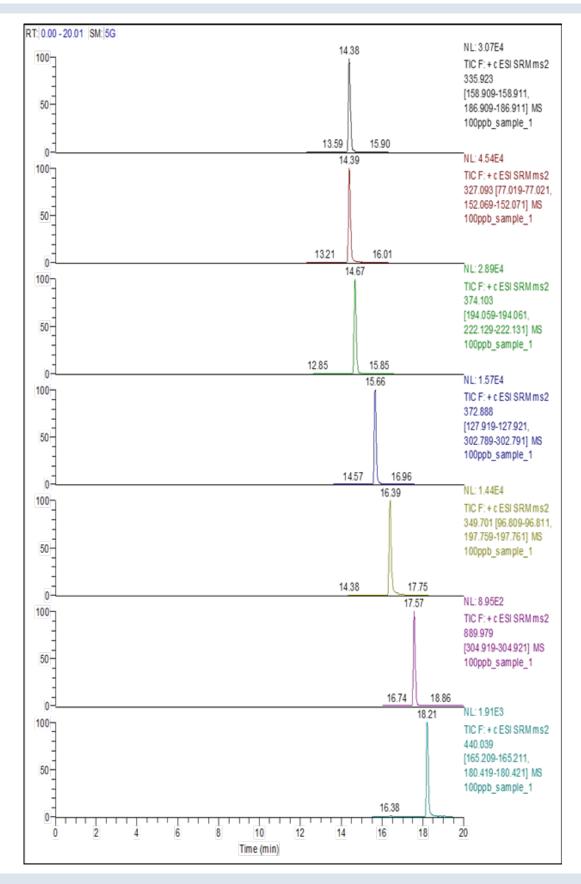


Figure 1. LC-MS/MS chromatogram of 21 pesticides and internal standard (TPP):



Results:

Accuracy and Precision Data									
(n=6)	Mean (%)	RSD (%)	Mean (%)	RSD (%)					
Analyte	20 ו	ng/g	100 ng/g						
Abamectin	74.9	11.17	71.8	6.28					
Acetochlor	93.9	7.32	97.5	3.19					
Atrazine	95.3	5.16	98.1	1.30					
Bifenthrin	94.9	12.90	90.9	10.32					
Carbaryl	95.2	7.13	93.9	3.53					
Carbendazim	69.6	8.55	81.6	5.06					
Chlorpyrifos	89.5	6.36	93.1	3.96					
Cyprodinil	93.2	9.12	94.1	1.78					
DEET	107.3	6.75	101.1	0.67					
Diazinon	94.4	7.53	98.2	1.36					
Dicrotophos	91.0	6.61	99.1	3.35					
DIMP	82.5	6.74	88.1	1.47					
Malathion	52.3	9.29	78.1	1.78					
Profenofos	79.5	8.76	88.6	2.75					
Pyrazophos	80.5	8.01	93.9	2.63					
Pyrimethanil	90.2	4.88	92.2	2.36					
Simazine	92.4	7.74	98.9	2.77					
Tebuconazole	88.5	6.69	93.1	3.08					
Tebuthiuron	100.7	7.39	101.1	2.14					
Thiabendazole	52.8	5.61	63.1	6.80					
Zoxamide	92.4	7.92	99.4	2.11					

Note: TPP was used as an internal standard. Matrix-matched calibration curves were used for quantification.

Results:

The vast majority of pesticides included in the study could be efficiently extracted from soil using the QuEChERS approach. Neutral pesticides, in particular, could be readily extracted using acetonitrile in combination with the citrate buffered QuEChERS salts. Thiabendazole on the other hand gave low, though reproducible, recovery throughout the study. Thiabendazole is a basic compound that is positively charged at low pH and is capable of being retained on the soil through ionic interactions, particularly by humic/fulvic acids. In addition, it is a planar pesticide and could potentially be retained by strong hydrophobic interactions on the soil (e.g. similar to analyte retention on graphitized carbon black (GCB)).

In the dispersive-SPE cleanup step, using a combination of PSA/C18 yields cleaner extracts than using PSA alone and should be used whenever possible. Linearity in detector response was observed over the concentration ranges investigated with correlation coefficients (R2 values) greater than 0.99 for all 21 analytes. As outlined in the Accuracy and Precision Data table, the majority of results were found be within an acceptable recovery range of 70-110 % and have RSD values <10 %, demonstrating that the method meets acceptable performance criteria.

8105-01-01

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 800.385.3153 • 215.781.9255 www.unitedchem.com Email: methods@unitedchem.com ©UCT, LLC 2023 • All rights reserved

