Determination of Veterinary Drug Residues in Milk Using Polymeric SPE and UHPLC-MS/MS Analysis

UCT Part Numbers

SLDA100ID21-18UM Selectra® DA UHPLC column

 $(100 \times 2.1 \text{ mm}, 1.8 \mu \text{m})$

SLDAGDC20-18UM Selectra® DA guard cartridge

 $(10 \times 2.0 \text{ mm}, 1.8 \mu \text{m})$

ECHLD126-P EnviroClean® HL DVB 200 mg/6 mL SPE cartridge

VMF024GL 24 position glass block manifold

> **SLGRDHLDR-HPOPT** Guard cartridge holder

Summary:

This application note outlines a multi-class, multi-reside method for the determination of 49 representative veterinary drugs in milk using a simple, solidphase extraction (SPE) procedure and analysis by UHPLC-MS/MS. To achieve fast and simultaneous extraction of the various drug residues, a generic liquid extraction procedure using EDTA/acetic acid buffer is conducted prior to extraction on a polymeric SPE cartridge. UHPLC separation is carried out with a Selectra® DA column, which exhibits alternative selectivity to a C18 phase and is capable of enhanced retention for the more polar drugs. The method was evaluated for each compound at three varying concentrations (1, 10 and 100 μ g/kg). For most compounds, recoveries were between 70% and 120% and reproducibility was <20%. In addition, the majority of compounds could be accurately detected at a concentration of 1 μ g/kg, demonstrating that the presented method is sufficient to monitor a wide range of veterinary drugs in milk. The drugs investigated belonged to several different classes, including β -agonists, macrolides, amphenicols, sulfonamides, tetracyclines and quinolones.

Introduction:

Veterinary drugs are frequently administered to food-producing animals, including dairy cows, to treat and prevent disease and/or increase growth rates. The inappropriate or illegal use of these drugs can result in the presence of their residues in food of animal origin which could pose a potential threat to human health. Milk is an important food commodity that is consumed by a large portion of the population, including infants. To ensure food safety and prevent the unnecessary exposure of consumers to veterinary drugs, it is vital to test milk for drug residues. The United States, European Union (EU), CODEX and other international organizations have established maximum residue limits (MRLs) for veterinary drugs in a variety of biological matrices, including milk [1-3]. The MRLs for milk are typically lower than those set for other biological matrices (muscle, liver and kidney) and span a wide concentration range (low $\mu g/kg$ to >1000 $\mu g/kg$). In addition, a number of drugs are prohibited for use in food producing animals or are unauthorized for use in lactating animals and require very low detection limits ($\leq 2 \mu g/kg$).

Milk is a complex matrix containing dissolved fats, carbohydrates, proteins and minerals (including calcium), which can complicate the development of a fast, easy and reliable analytical method for the identification and quantification of veterinary drug residues. Development of a multi-class, multi-residue (MMR) method can be challenging not only due to the inclusion of a large number of drugs with diverse physicochemical properties, but also on account of the complex sample matrix and the instability of certain drug classes (e.g. β-lactams, tetracyclines and macrolides). A MMR method should ideally be capable of extracting a wide range of drugs, reduce major matrix interferences, obtain good analyte recovery, be reproducible and achieve adequate limits of detection (LOD's). The use of a generic sample preparation procedure, such as SPE using a polymeric sorbent, is a suitable approach for achieving these goals. Ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) is the detection system of choice for veterinary drugs as it allows rapid detection of trace-level residues in complex matrices. However, the diverse physicochemical properties of the veterinary drugs still pose challenges and analytical conditions must be optimized to obtain adequate sensitivity of all the compounds as well as good retention and peak shape of problematic compounds.

Sample Preparation Procedure:

1. Sample Extraction

- a) Weigh 5 g of milk into a 15 mL polypropylene centrifuge tube.
- b) Add 5 mL of 0.1M disodium EDTA + 2% acetic acid.
- c) Vortex for 5 minutes to deproteinize the milk.
- d) Centrifuge at \geq 3500 \times g for 5 minutes.

Note: A larger volume of extraction solvent or a second extraction of the milk sample (5mL buffer) can be carried out if deemed necessary.

2. SPE Extraction

- a) Condition SPE cartridge with:
 - 1) 1 \times 3 mL methanol
 - 2) 1 \times 3 mL ultrapure water
- b) Apply the supernatant to the SPE cartridge, taking care to avoid any transfer of the lipid layer. If required, use a low vacuum to draw the sample through (≤5 mL/min).

3. Wash Cartridge

- a) 1×3 mL ultrapure water.
- b) 1×3 mL 10% methanol.
- c) Dry cartridge under vacuum (\geq 10 inHg) for 5-10 minutes to remove residual water.
- d) 1 \times 3 mL hexane.
- e) Dry cartridge under vacuum (\geq 10 inHg) for 2 minute to remove residual hexane.

4. Elution

- a) Elute with 3 mL acetone.
- b) Evaporate the sample to dryness at 35-40°C under a gentle stream of nitrogen.
- c) Reconstitute in 1 mL of methanol:water (50:50, v/v).
- d) Filter extract with a 0.22 µm nylon (or other suitable membrane) syringe filter into an autosampler vial.

LC-MS/MS Parameters:

HPLC Conditions					
HPLC System	Thermo Scientific™ Dionex™ Ultimate™ 3000 UHPLC				
MS System	Thermo Scientific™ TSQ Vantage™ (MS/MS)				
HPLC Column	UCT Selectra® DA, 100 × 2.1 mm, 1.8 μm (p/n: SLDA100ID21-18UM)				
Guard Column	UCT Selectra® DA, 10 × 2.0 mm, 1.8 μm (p/n: SLDAGDC20-18UM)				
Column temp.	60 °C				
Guard Column holder	p/n: SLDGRDHLDR				
Injection volume	5 μL				
Flow rate	400 μL/min				

Mobile Phase Gradient							
Time (min)	Mobile phase A water + 0.1% formic acid	Mobile phase B methanol + 0.1% formic acid					
0.0	95	5					
0.5	70	30					
4.0	70	30					
5.0	40	60					
8.0	40	60					
8.5	0	100					
12	0	100					
12.1	95	5					
16.5	95	5					

MS Conditions					
Instrumentation	Thermo Scientific™ TSQ Vantage™				
lonization mode	ESI ⁺ & ESI ⁻				
Spray voltage	4000 V				
Vaporizer temperature	450 °C				
Capillary temperature	350 ℃				
Sheath gas pressure	55 arbitrary units				
Auxiliary gas pressure	45 arbitrary units				
lon sweep gas	0 arbitrary units				
Declustering potential	0 V				
Collision gas	Argon (1.7 mTorr)				
Cycle time	0.5 sec				
Software	Xcalibur™ version 2.2				

MRM Transitions							
Compound	Polarity	t _R (min)	Precursor ion	Product ion 1	Product ion 2		
Sulfanilamide	+	2.14	156.0	92.1	108.1		
Albuterol	+	2.55	240.1	121.1	148.1		
Albuterol-D₃ (IS)	+	2.55	243.1	124.2	151.2		
Lincomycin	+	3.13	407.2	126.1	359.2		
Ampicillin	+	3.82	350.1	106.1	192.0		
Trimethoprim	+	3.90	291.1	123.1	230.1		
Trimethoprim ¹³ C ₃ (IS)	+	3.90	294.1	233.2	264.2		
Thiamphenicol	-	4.10	353.9	121.1	185.0		
Sulfadiazine	+	4.15	251.0	92.1	156.0		
Sulfathiazole	+	4.30	256.0	92.1	156.0		
Norfloxacin	+	4.35	320.1	233.1	276.1		
Ormetoprim	+	4.53	275.1	123.1	259.1		
Thiabendazole	+	4.57	202.0	131.1	175.1		
Thiabendazole-D ₆ (IS)	+	4.57	208.0	137.1	181.1		
Oxytetracycline	+	4.60	461.1	337.1	426.1		
Cefalexin	+	4.85	348.0	158.0	174.0		
Ofloxacin	+	5.06	362.1	261.1	318.2		
Ciprofloxacin	+	5.25	332.1	231.1	288.2		
Ciprofloxacin ¹⁵ N ¹³ C ₃ (IS)	+	5.25	336.1	235.1	291.2		
Tetracycline	+	5.30	445.1	154.0	410.2		
Sulfamethoxazole	+	5.38	254.1	92.1	148.1		
Sulfamethoxazole ¹³ C ₆ (IS)	+	5.38	260.0	98.2	162.1		
Sulfamerazine	+	5.41	265.0	92.1	156.0		
Lomefloxacin	+	6.04	352.1	265.1	308.2		
Sulfamethizole	+	6.12	271.0	92.1	156.0		
Chloramphenicol	-	6.43	320.9	121.0	152.0		
Cefotaxime	+	6.50	456.0	125.0	167.0		
Enrofloxacin	+	6.51	360.1	245.1	316.2		
Demeclocycline	+	6.55	465.0	430.1	448.1		
Sulfachloropyridazine	+	6.76	285.0	92.1	156.0		
Sulfamethazine	+	6.80	279.1	124.1	186.0		
Sulfamethazine ¹³ C ₆ (IS)	+	6.80	285.1	124.2	186.1		
Azithromycin	+	6.85	749.1	116.0	591.5		
Sarafloxacin	+	6.88	386.1	299.1	342.2		
Clindamycin	+	6.96	425.1	126.1	377.2		

MRM Transitions							
Compound	Polarity	t _R (min)	Precursor ion	Product ion 1	Product ion 2		
Chlortetracycline	+	7.05	479.0	154.0	444.1		
Cefazolin	+	7.15	455.0	111.9	156.0		
Doxycycline	+	7.24	445.1	321.1	428.2		
Diphenhydramine	+	7.34	256.1	115.1	165.1		
Carbadox	+	7.40	263.0	129.1	231.1		
Sulfadimethoxine	+	7.60	263.0	108.1	156.0		
Erythromycin	+	7.91	734.4	158.0	576.4		
Erythromycin- ¹³ C ₂ (IS)	+	7.91	736.4	160.1	578.4		
Cephalothin	+	8.10	419.0	204.0	359.1		
Penicillin G	+	8.15	367.1	114.0	160.0		
Anhydroeythromycin	+	8.23	716.4	158.0	558.4		
Clarithromycin	+	8.53	748.4	158.0	590.4		
Ceftiofur	+	8.73	524.0	124.9	241.0		
Penicillin V	+	8.83	383.1	114.0	160.0		
Tylosin	+	8.97	916.4	173.9	772.5		
Roxithromycin	+	9.30	837.4	158.0	679.5		
Oxolinic acid	+	9.39	262.0	160.1	216.0		
Oxacillin	+	9.52	434.1	144.0	160.0		
Cloxacillin	+	10.10	468.0	468.0 160.0			
Flumequine	+	10.40	262.0	126.1	202.0		
Virginiamycin	+	10.80	526.2	337.1	355.1		

Results and Discussion:

Chromatographic Separation

The unique chemistry of the Selectra[®] DA column, which contains a polyaromatic stationary phase, provides orthogonal selectivity to a traditional C18 column and offers a high degree of retention and selectivity for aromatic compounds. The stationary phase is capable of retaining analytes through hydrophobic (dispersive) interactions as well as through pi-pi (π - π) interactions which exhibit a substantial increase in retention for dipolar, unsaturated or conjugated analytes. The Selectra[®] DA column is ideally suited for the analysis of veterinary drug residues, as most compounds (and metabolites) possess aromatic functionality.

In the final UHPLC-MS/MS method, methanol was chosen as the organic mobile phase solvent, as it was found to give better overall peak shape than acetonitrile, particularly for the tetracycline and fluoroquinolone antibiotics. A hold was included in the gradient to improve chromatographic separation and all compounds were successfully eluted in <12 min. The enhanced retention of the Selectra® DA column ensured that the most polar compound included in the method, sulfanilamide, didn't elute until >2 minutes (30% methanol). Although it was possible to start the gradient at a higher percentage of organic solvent (20%) and reduce the overall run time, this required the use of a smaller injection volume (2 μ L) which negatively affected the method sensitivity. Ultimately, the best sensitivity was obtained by starting the gradient at 5% methanol and using a 5 μ L injection volume.

Figure 1. TIC chromatogram of an extracted milk sample (10 μ g/kg) containing the 49 veterinary drugs and 7 internal standards.

Sample Preparation Procedure:

Prior to instrumental analysis, a sample pre-treatment step is required to concentrate the analytes of interest and eliminate non-desirable matrix components. This is particularly important for the analysis of veterinary drugs in milk because of their low regulatory limits and the larger sample size required to obtain necessary method sensitivity. One of the biggest difficulties in milk analysis is the high fat, protein, and calcium content that can often interfere with instrumental analysis. The instability of certain drug classes, namely β-lactams, tetracyclines and macrolides, causes additional complications by limiting the conditions that can be used for sample extraction and cleanup. Therefore, the sample preparation procedure was optimized to remove as much co-extracted matrix components as possible while minimizing any loss of the veterinary drug residues

A simple deproteinization procedure using an EDTA/acetic acid buffer (sample pH should be 4-4.5) followed by centrifugation to separate the proteins and lipids was carried out prior to SPE extraction and cleanup. The inclusion of EDTA in the extraction buffer prevents the complexation of drugs with metal ions (e.g. calcium), particularly the tetracyclines and fluoroquinolones. After application of the sample supernatant to the SPE cartridge, the sorbent was washed with 10% methanol to remove polar matrix components and hexane to remove lipophilic compounds. Acetone was used as the SPE elution solvent as it was found to be more effective than methanol, particularly for hydrophobic compounds that contain multiple aromatic functional groups and are strongly retained on the DVB sorbent. Furthermore, acetone is a volatile organic solvent that is readily removed by evaporation under mild conditions (35-40°C). Filtration of the sample extract prior to LC-MS/MS analysis and the use of isotopically labeled internal standards and matrixmatched calibration curves are recommended in order to obtain the best possible results.

For most compounds, the recovery was between 70% and 120% and the reproducibility <20%. Only a small number of compounds gave results outside of the acceptable limits, which was due to analyte instability (cefalexin and ceftiofur) or inadequate sensitivity at the lowest concentration level (sulfanilamide and thiamphenicol). In addition, all compounds could be accurately detected at a concentration of 10 μ g/kg and the vast majority of compounds at 1 μ g/kg, demonstrating that the presented method is suitable for monitoring a wide range of veterinary drug residues in milk.

Accuracy, Precisio	n and M	ethod	Perform	nance	Data fo	r Who	le Milk	
	1 µg/kg	(n=12)	10 µg/kg	(n=12)	100 µg/kg	ı (n=12)		
Analyte	Recovery (%)	RSD (%)	Recovery (%)	RSD (%)	Recovery (%)	RSD (%)	LCL (µg/kg)	Linearity (R ²)
Albuterol	100.1	6.5	106.6	4.4	105.9	1.7	0.5	0.9996
Ampicillin	109.8	10.4	92.3	7.8	96.3	3.6	0.5	0.9983
Anhydroeythromycin	112.7	9.8	107.8	6.7	100.2	4.4	0.5	0.9971
Azithromycin	71.0	7.7	83.4	8.0	82.8	6.2	0.5	0.9981
Carbadox	82.3	11.4	95.3	12.2	95.9	6.5	0.5	0.9962
Cefalexin	69.3ª	7.8	78.4	25.9	82.1	21.6	1.0	0.9981
Cefazolin	96.1	1.9	97.3	7.2	101.7	3.8	1.0	0.9980
Cefotaxime	96.6	11.3	90.7	6.2	92.1	3.2	0.5	0.9979
Ceftiofur	57.1	7.7	67.8	20.3	66.2	25.9	0.5	0.9982
Cephalothin	105.4	5.4	96.5	11.1	99.8	6.0	0.5	0.9997
Chloramphenicol	98.0	12.2	110.3	7.4	101.5	4.1	0.5	0.9959
Chlortetracycline	108.1	4.7	89.7	8.6	92.2	5.4	0.5	0.9999
Ciprofloxacin	95.0	3.5	99.4	4.2	100.9	1.8	0.5	0.9988
Clarithromycin	104.5	7.1	99.3	7.3	100.8	4.9	0.5	0.9986
Clindamycin	82.4	19.2	81.0	12.3	86.2	19	0.5	0.9978
Cloxacillin	87.6	11.5	79.0	6.7	84.2	3.5	0.5	0.9982
Demeclocycline	100.3	11.1	95.2	5.8	95.9	7.3	0.5	0.9991
Diphenhydramine	92.3	8.2	96.6	6.0	97.8	8.0	0.5	0.9999
Doxycycline	102.9	4.3	87.2	6.1	92.7	5.3	0.5	0.9988
Enrofloxacin	96.4	4.2	84.4	5.6	99.5	4.8	0.5	0.9985
Ervthromvcin	97.1	8.0	102.6	3.8	100.1	1.4	0.5	0.9970
Flumequine	80.8	13.9	93.0	6.8	91.8	10.5	0.5	0.9992
Lincomycin	109.3	5.8	87.4	9.1	94.0	4.6	0.5	0.9974
Lomefloxacin	107.1	4.4	111.0	4.6	108.5	1.9	0.5	0.9989
Norfloxacin	96.4	4.7	98.0	5.5	98.1	3.3	0.5	0.9992
Ofloxacin	101.2ª	4.9	83.7	9.1	100.1	7.3	0.5	0.9988
Ormetoprim	95.3	6.1	101.6	10.1	98.0	4.2	0.5	0.9974
Oxacillin	92.8	10.5	83.4	5.8	88.6	6.6	0.5	0.9990
Oxolinic acid	101.0	5.4	97.5	7.9	99.5	3.9	0.5	0.9986
Oxytetracycline	98.8	11.6	90.9	13.8	96.2	4.2	0.5	0.9984
Penicillin G	103.2	5.4	98.0	7.1	99.9	2.5	0.5	0.9995
Penicillin V	101.7	10.1	88.9	6.2	96.7	5.9	0.5	0.9990
Roxithromycin	97.2	9.1	92.4	10.5	95.6	4.2	0.5	0.9986
Sarafloxacin	79.0	16.2	102.4	11.5	98.5	6.1	0.5	0.9994
Sulfachloropyridazine	85.6	9.0	82.7	15.1	88.7	14.3	0.5	0.9994
Sulfadiazine	88.7	10.1	89.7	7.8	86.7	6.1	0.5	0.9985
Sulfadimethoxine	74.4	14	74.6	7.4	81.4	5.5	0.5	0.9991
Sulfamerazine	87.7	10.7	88.9	10.8	100.1	12.4	0.5	0.9975
Sulfamethazine	97.7	9.1	99.4	4.3	99.7	2.4	0.5	0.9996
Sulfamethizole	91.0	13.5	95.2	12.2	98.8	5.0	0.5	0.9990
Sulfamethoxazole	89.0	9.2	101.6	3.6	101.7	2.5	0.5	0.9994
Sulfanilamide	87.1ª	1.6	82.6	12.2	75.2	8.2	0.5	0.9993
Sulfathiazole	90.0	8.9	92.4	12.8	98.4	4.4	0.5	0.9990
Tetracycline	108.8	10.0	99.0	5,2	99.4	7,7	0.5	0.9993
Thiabendazole	96.5	5.7	102.3	4.5	101.6	1.5	0.5	0.9997
Thiamphenicol	81.3	23.3	103.3	7,7	80.2	17.2	0.5	0.9962
Trimethoprim	94.8	5.6	105.6	3.6	103.1	1.8	0.5	0.9997
Tylosin	82.5	7.4	71.4	5.2	79.4	6.1	0.5	0.9995
Virginiamycin	89.3	16.1	91.4	9.3	92.7	10.0	0.5	0.9979

Figure 2. Example of an eight-point matrix-matched calibration curve (0.5-200 µg/kg, equivalent to 2.5-1000 ng/mL in final extract).

6102-05-02

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 800.385.3153 • 215.781.9255 www.unitedchem.com Email: methods@unitedchem.com ©UCT, LLC 2016 • All rights reserved

© United Chemical Technologies 2023