Determination of Pesticide Residues in Blueberries by AOAC QuEChERS Approach and Dispersive SPE Cleanup with a Novel Sorbent ChloroFiltr®

UCT Part Numbers

SLGRDHLDR-HPOPT Guard Cartridge Holder

ECMSSA50CT-MP Mylar pouch containing 6 g MgSO₄ and 1.5 g NaOAc with 50-mL centrifuge tubes included

SLAQ100ID21-3UM Selectra® Aqueous C18, 100 x 2.1 mm, 3 μm **CUMPSGGC182CT** 2 mL centrifuge tube containing 150 mg MgSO₄, 50 mg PSA, 50 mg C18, and 50 mg ChloroFiltr®

SLAQGDC20-3UM Selectra® Aqueous C18, Guard column, 10 x 2.1 mm, 3 μm

Summary:

Blueberry has been ranked as one of the healthiest fruits for its high antioxidant content that helps combating free radicals, which could damage DNA and cellular structures [1]. Application of pesticides during plant cultivation is common to increase product yield, therefore it is valuable developing effective analytical methods for the determination of pesticide residues in blueberries, which however is challenging due to matrix complexity as blueberries are rich in anthocyanins, sugars, polyphenols, vitamins, minerals, and other interfering components.

This application outlines a simple, fast, and cost-effective method for the determination of multi-class pesticides, including one of the most problematic pesticides, pymetrozine in blueberries. The acetate buffered AOAC QuEChERS protocol demonstrated higher extraction efficiency for pymetrozine than the other 2 QuEChERS protocols (the EN citrate buffered or the original unbuffered), thus was selected for the extraction of pesticide residues in blueberries. 15 g of homogenized blueberries were extracted with 15 mL of acetonitrile (MeCN) containing 1% acetic acid (HAc). 6 g magnesium sulfate (MgSO₄) and 1.5 g sodium acetate (NaOAc) were employed to enhance phase separation and partition of pesticides into the MeCN layer. After shaking and centrifugation, 1 mL of the supernatant was transferred to a 2-mL dSPE tube containing the optimized cleanup sorbents of 150 mg MgSO₄, 50 mg PSA, 50 mg C18, and 50 mg ChloroFiltr[®]. Residual water was absorbed by MgSO₄, anthocynins, polyphenols, sugars and organic acids were removed by PSA, lipids and other non-polar interferences were retained by C18, while chlorophylls were removed by ChloroFiltr[®], resulting in clean extract for LC/MS/MS analysis. UCT's aqueous C18 HPLC column was used for analyte retention and separation, which showed superior retention especially for several very polar pesticides, such as methamidophos and acephate.

Procedure:

1. QuEChERS Extraction

- a) Weigh 15 \pm 0.3 g of homogenized blueberry sample into 50-mL centrifuge tubes.
- b) Add triphenyl phosphate (TPP) as internal standard (IS) (optional), and appropriate amounts of spiking solution to fortified samples.
- c) Add 15 mL of MeCN with 1% HAc. Cap and shake for 1 min at 1000 strokes/min using a Spex 2010 Geno-Grinder.
- d) Add salts (6 g MgSO₄ and 1.5 g NaOAc) from pouch (ECMSSA50CTMP) to the 50-mL tube, and vortex for 10 sec to break up salt agglomerates.
- e) Shake for 1 min at 1000 strokes/min using the Geno-Grinder.
- f) Centrifuge at 3000 rcf for 5 min.

2. dSPE Cleanup

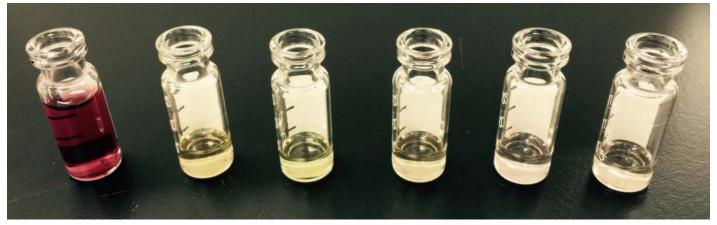
- a) Transfer 1 mL of the supernatant to a 2-mL dSPE tube (CUMPSGGC182CT).
- b) Shake for 1 min at 1000 strokes/min using the Spex 2010 Geno-Grinder.
- c) Centrifuge at 3000 rcf for 5 min.
- d) Transfer 0.2 mL of the cleaned extract into a 2-mL auto-sampler vial, add 0.2 mL of reagent water, and vortex for 30 sec.
- e) The samples are ready for LC-MS/MS analysis.

		LC-MS/MS Parameters							
HPLC	Thermo Scientific Dionex UltiMate 3000 [®] LC System								
Column	UCT, Selectra®, aQ C18, 100 x 2.1 mm, 3 μm								
Guard Column	UCT, Selectra®, aQ C18, 10 x 2.0 mm, 3 μm								
Column Temperature	40 °C								
Column Flow Rate	0.300 mL/min								
Injection Volume	2 μL								
Auto-sampler Temperature	10 °C								
	Gradient Program								
Time (min)		% Mobile Phase A 10 mM ammonium acetate in DI water	% Mobile Phase B 0.1% formic acid in MeOH						
0		100	0						
1		50	50						
3.5		50	50						
6		5	95						
9		5	95						
9.1		100	0						
14		100 0							

Divert mobile phase to waste from 0 – 1.5 and 11.5 – 14 min to prevent ion source contamination.

MS Parameters					
Instrumentation	Thermo Scientific TSQ Vantage tandem MS				
Polarity	ESI ⁺				
Spray voltage	3500 V				
Vaporizer temperature	450 °C				
lon transfer capillary	350 ℃				
Sheath gas pressure	50 arbitrary units				
Auxiliary gas pressure	40 arbitrary units				
Q1 and Q3 peak width	0.4 and 0.7 Da				
Collision gas and pressure	Ar at 1.5 mTorr				
Cycle time	0.5 sec				
Acquisition method	EZ Method (scheduled SRM)				

SRM Table								
Compound	Precursor	Product 1	CE 1	Product 2	CE 2	S-lens RF		
Metamidophos	142.0	94.1	14	125.0	13	50		
Acephate	184.0	143.0	6	95.0	25	33		
Aldicarb sulfoxide	207.1	89.1	13	69.1	16	32		
Oxydemeton methyl	247.0	169.0	13	109.0	27	57		
Pymetrozine	218.1	105.1	20	176.1	17	63		
Dichrotophos	238.1	112.1	12	127.0	18	52		
Triethylphosphorothioate	199.0	125.0	16	143.0	14	55		
Dimethoate	230.0	125.0	22	171.0	15	50		
Carbendazim	192.1	160.1	18	132.1	29	60		
Dichlorvos	220.9	109.0	17	127.0	13	62		
Thiabendazole	202.0	175.1	25	131.1	31	70		
Fenamiphos sulfone	336.1	266.0	19	188.0	26	75		
Fenamiphos sulfoxide	320.1	233.0	24	108.1	40	60		
Simazine	202.1	132.0	19	124.1	16	66		
Tebuthiuron	229.1	172.1	16	116.0	26	55		
Carbaryl	202.1	145.1	11	127.1	30	38		
Flutriafol	302.1	70.1	17	123.0	28	69		
Famphur	326.0	217.0	20	93.0	30	68		
Thionazin	249.0	113.0	23	97.0	28	58		
DEET	192.1	119.1	17	91.1	29	64		
Atrazine	216.1	174.1	16	68.1	34	66		
Malathion	331.0	127.0	12	99.0	25	55		
Triadimefon	294.1	197.1	14	69.1	20	65		
Pyrimethanil	200.1	107.1	24	183.1	23	68		
Acetochlor	270.1	224.1	10	148.1	18	58		
Sulfotep	323.0	97.0	37	115.0	30	60		
Tebuconazole	308.1	70.1	21	125.0	33	66		
Zoxamide	336.0	187.0	21	159.0	38	74		
Diazinon	305.1	169.1	20	153.1	20	68		
TPP (IS)	327.1	152.1	35	77.1	38	95		
Cyprodinil	226.1	93.1	33	77.1	43	70		
Pyrazophos	374.1	222.1	20	194.1	31	100		
Profenofos	372.9	302.9	17	128.0	42	73		
Ethion	385.0	142.9	26	199.0	6	56		
Chlorpyrifos	349.9	97.0	32	197.9	19	67		



Results:

Selection of dSPE cleanup sorbents:

Different sorbent mixtures (A - E) were packed in 2-mL dSPE centrifuge tubes for blueberry extract cleanup:

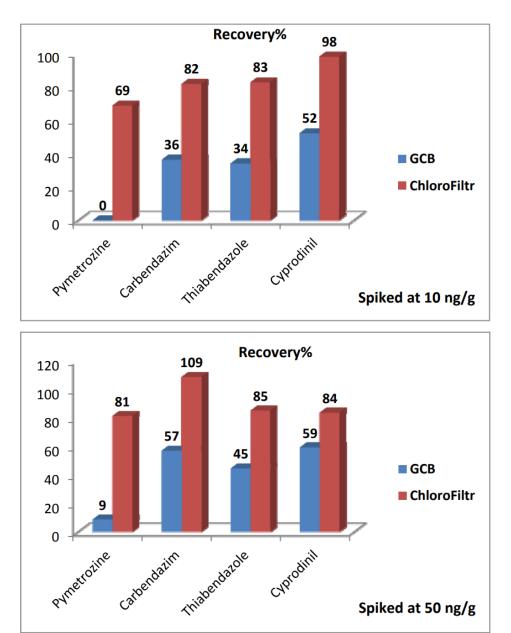
- A. 150 mg MgSO4 and 50 mg PSA
- B. 150 mg MgSO4 and 150 mg PSA
- C. 150 mg MgSO4, 50 mg PSA, and 50 mg C18
- D. 150 mg MgSO4, 50 mg PSA, 50 mg C18, and 7.5 mg GCB
- E. 150 mg MgSO4, 50 mg PSA, 50 mg C18, and 50 mg ChloroFiltr®

Photographs, from left to right: crude blueberry extract, and extracts cleaned with sorbent mixture A, B, C, D, and E, respectively.

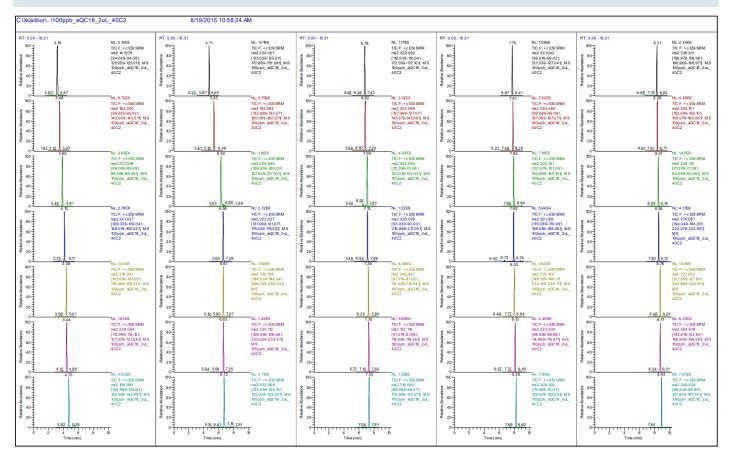
Illustrated in the above picture, cleanup of blueberry extracts with PSA only (A and B) or PSA and C18 (C) is inefficient for complete pigment removal. With the addition of either GCB (D) or ChloroFiltr[®] (E), colorless extracts were obtained; therefore sorbent mixtures D and E were selected for the recovery study.

Recovery study:

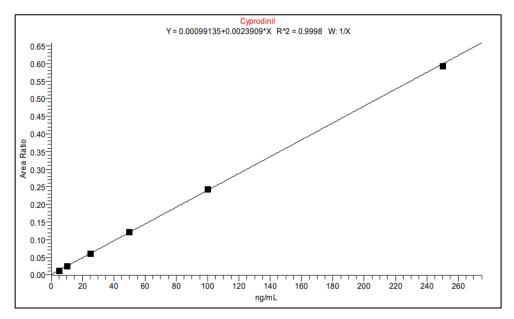
Blueberry samples were fortified with 10 ng/g and 50 ng/g of pesticides, and underwent the AOAC QuEChERS extraction and dSPE cleanup with 150 mg MgSO₄, 50 mg PSA, 50 mg C18, and 7.5 mg GCB (D) or 50 mg ChloroFiltr[®] (E) as described above. The mean recoveries and RSD% of 6 replicated samples are listed in the table below.


Accuracy and Precision of Pesticides in Spiked Blueberries

Compound	dSPE c	dSPE cleanup with PSA/C18/GCB				dSPE cleanup with PSA/C18/ChloroFiltr®				
	Spiked a	Spiked at 10 ng/g		Spiked at 50 ng/g		Spiked at 10 ng/g		Spiked at 50 ng/g		
	Recovery%	RSD%	Recovery%	RSD%	Recovery%	RSD%	Recovery%	RSD%		
Methamidophos	82.8	2.5	92.8	1.0	85.0	3.7	89.3	1.2		
Acephate	82.8	11.0	83.1	12.8	86.1	11.3	89.5	13.3		
Aldicarb_sulfoxide	87.0	6.5	95.6	12.7	103.4	11.5	82.1	12.9		
Oxydemeton_methyl	96.6	5.9	94.0	7.4	96.2	5.9	84.2	8.2		
Dichrotophos	65.7	20.1	103.6	10.7	91.6	13.3	102.3	15.6		
Pymetrozine	0.0	na	8.7	9.4	68.8	11.6	81.3	13.4		
Dimethoate	62.8	16.1	103.0	6.2	101.1	10.9	94.9	10.6		
Triethylphosphorothioate	65.0	11.9	99.9	6.7	96.4	12.5	95.8	10.4		
Carbendazim	36.3	9.9	57.0	11.1	81.7	5.4	108.7	9.5		
Dichlorvos	91.0	6.1	103.3	1.8	95.4	4.9	91.5	3.8		
Fenamiphos_sulfone	96.1	1.9	104.1	1.6	97.2	5.5	97.9	9.4		
Fenamiphos_sulfoxide	94.5	2.3	99.2	1.4	101.0	4.2	94.9	10.5		
Simazine	94.5	7.3	103.7	3.1	99.4	8.0	94.5	6.0		
Carbaryl	103.5	3.3	104.2	3.1	95.4	3.7	98.7	6.0		
Tebuthiuron	95.6	2.0	101.1	1.9	97.9	1.9	97.7	6.7		
Thiabendazole	34.1	7.0	44.5	7.7	82.7	2.9	85.1	9.8		
Famphur	103.3	3.1	109.4	1.4	98.1	10.0	102.7	1.7		
Flutriafol	96.4	2.3	105.9	0.9	92.1	3.5	97.4	1.4		
Thionazin	104.3	2.8	105.6	1.8	90.8	14.9	97.6	4.3		
Atrazine	116.9	2.7	116.1	1.8	84.6	12.3	86.6	11.5		
DEET	127.6	3.8	112.9	2.5	85.1	24.9	84.7	18.8		
Malathion	94.5	7.5	108.2	2.0	95.4	0.9	104.2	3.7		
Triadimefon	89.9	3.3	104.3	2.0	91.4	5.5	99.0	1.6		
Pyrimethanil	62.6	9.3	72.8	3.8	81.9	5.9	89.3	2.3		
Acetochlor	95.7	3.7	105.2	2.8	102.1	5.7	97.8	2.4		
Sulfotep	94.2	3.3	107.7	1.7	96.3	3.0	106.3	1.2		
Tebuconazole	93.0	3.5	102.6	1.7	87.3	2.1	93.5	1.8		
Zoxamide	99.0	2.5	109.1	1.1	89.1	2.1	96.3	2.2		
Diazinon	93.8	2.4	103.1	0.9	93.4	3.5	96.4	1.1		
Cyprodinil	52.2	5.9	59.2	6.6	98.1	3.4	83.6	1.7		
Pyrazophos	70.2	5.5	76.1	7.5	94.5	2.0	99.3	1.3		
Ethion	96.8	4.0	100.9	6.1	95.9	3.3	93.6	2.0		
Profenofos	91.0	3.6	98.9	3.9	88.1	2.5	87.3	1.6		
Chlorpyrifos	88.7	2.1	98.5	3.4	94.6	0.9	89.1	2.2		



The recoveries of several pesticides such as pymetrozine, carbendazim, thiabendazole, and cyprodinil, were found be adversely affected by GCB, but unaffected when ChloroFiltr[®] was used; therefore, this sorbent combination was selected for blueberry extract cleanup in the final optimized procedure. The graphs below demonstrate the recovery comparison using GCB versus ChloroFiltr[®] at 2 contrasting levels (10 and 50 ng/g).



Chromatograms of 34 Pesticides and TPP (IS) in 1:1 MeCN:H₂O (100 ppb) using UCT Aqueous C18 HPLC Column (Compound order can be found in the SRM table.)

Matrix-matched Calibration Curve of Cyprodinil ($R^2 = 0.9998$)

References:

[1] http://www.whfoods.com/genpage.php?tname=foodspice&dbid=8

5111-02-01 UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 800.385.3153 • 215.781.9255 <u>www.unitedchem.com</u> Email: <u>methods@unitedchem.com</u> ©UCT, LLC 2015 • All rights reserved

