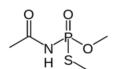
Determination of Organophosphate Pesticides in Urine Using a 'Filter And Shoot' (FASt®) Extraction and LC-MS/MS

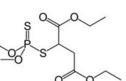
Summary:

Organophosphate pesticides (OP) are a diverse group of compounds. Derived from phosphoric acid they exhibit varied physicochemical properties. They are used extensively as nerve poisons to kill target pests (usually insects). However, their toxicity extends to mammals and they can adversely affect the human nervous system, even at low exposure levels. For example, in 2013, 23 Indian students were killed from cooking oil contaminated with monocrotophos. OP pesticides are unstable and breakdown relatively quickly through hydrolysis and exit the human body via urine; thus monitoring OP pesticides and their metabolites in urine can indicate any recent exposures.

Extracting OP pesticides can be a challenge due to their varied physicochemical properties. Liquid/Liquid (L/L), solid phase extraction (SPE), supported liquid extraction (SLE), and QuEChERS work for mid to non-polar compounds, but not for polar compounds due to insufficient analyte partitioning between the aqueous and organic phases or retention on typical reverse phase sorbents.

UCT Part Numbers


CSFAS203 Clean Screen FASt[®] 200 mg, 3 mL


SLAQGDC20-3UM Selectra® Aqueous C18 Guard Column 10 x 2.1 mm, 3 μm **SLAQ100ID21-3UM** Selectra® Aqueous C18 Column 100 x 2.1mm, 3 μm

> **SLGRDHLDR-HPOPT** Guard Cartridge Holder

In this application a simple, fast sample preparation approach for LC/MS analysis of 13 OP pesticides in urine samples was conducted. This method efficiently retains the unwanted matrix components and particulates to the sorbent and frits while allowing the analytes of interest to pass through the sorbent bed, and collected for direct LC-MS/MS analysis.

Acephate LogP = -0.33

Malathion LogP = 1.86

Chlorpyrifos LogP = 4.78

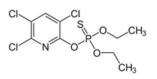


Figure 1. Examples of OP pesticides showing varied structures polarities

Sample Preparation:

- 1) Hydrolyze urine sample with beta-glucuronidase if there are any glucuronide or sulfate- conjugated metabolites.
- 2) Mix 0.5 mL* urine sample with 0.5 mL acetonitrile containing internal standard(s), vortex for 1 min.
- 3) Apply the mixed sample to FASt column (or well plate), apply a low vacuum and collect the filtrate.
- 4) Mix 200 μ L filtrate with 800 μ L reagent water**, vortex and analyze by LC-MS/MS.

* Less sample volume can be used for 96-well plate application.

** Water dilution was needed for better retention of a couple polar OP pesticides, which is not necessary if only mid to non-polar compounds are analyzed.

Figure 2. FASt Setup

Figure 3. Urine Sample: Before and after extraction

LC-MS/MS Method						
HPLC	Thermo Scientific Dionex UltiMate 3000® LC System					
Mass Spec	Thermo Scientific TSQ Vantage tandem MS					
Polarity	ESI+					
Column	Selectra® Aqueous C18 100 x 2.1 mm, 3 µm (PN: SLAQ100ID21-3UM)					
Guard column	Selectra® Aqueous C18 Guard Column 10 x 2.0 mm, 3 μm (PN: SLAQGDC20-3UM)					
Column Temperature	40 °C					
Column Flow Rate	0.300 mL/min					
Auto-sampler Temperature	10 °C					
Injection Volume	10 μL					
Mobile Phases	Mobile phase A: 20 mM ammonium formate in water Mobile phase B: 0.1 % formic acid in MeOH					

Gradient Program							
Time (min)	Mobile phase A (%)	Mobile phase B (%)					
0	100	0					
0.5	100	0					
3	50	50					
4.5	50	50					
6	35	65					
9	35	65					
13	5	95					
15	5	95					
15.1	100	0					
19	100	0					

Divert mobile phase to waste from 0 - 2 and 16 - 19 min to prevent ion source contamination.

Results:

Retention Times, SRM Transitions & Linearity								
Compound	RT (min)	Parent ion	Product ion 1	Product ion 2	Linearity (R ²)			
Methamidophos	3.53	142.0	93.7	124.6	0.9997			
Acephate	4.36	183.9	142.6	94.6	0.9990			
Dicrotophos	5.88	237.9	126.6	71.7	0.9994			
o,o,o-triethylphosphorothioate	6.20	199.0	124.6	78.6	0.9991			
Dimethoate	6.19	230.0	124.6	170.6	0.9990			
Famphur	8.76	325.9	216.6	92.6	0.9980			
Malathion	10.23	330.9	126.7	98.6	0.9963			
Sulfotep	12.08	322.9	96.6	114.5	0.9977			
Diazinon	12.82	305.0	168.7	152.7	0.9995			
TPP (IS)	13.14	327.0	151.6	76.7	NA			
Pyrazophos	13.42	374.0	221.6	193.6	0.9945			
Profenofos	14.06	372.9	127.6	304.4	0.9980			
Ethion	14.33	384.9	142.5	96.5	0.9974			
Chlorpyrifos	14.54	350.0	96.6	199.3	0.9988			

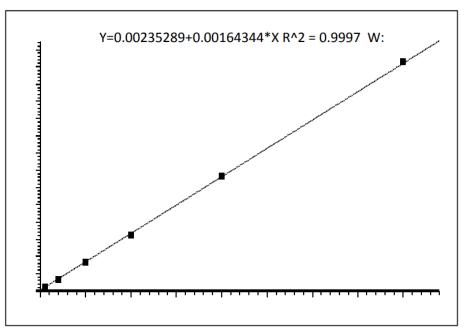


Figure 4. Calibration Curve of Methamidophos

Recovery and RSD Data – Spiked Urine Samples								
	Spiked at 10 ng/mL		Spiked at 50 ng/mL		Spiked at 200 ng/mL			
Compound Name	Recovery %	RSD% (n=6)	Recovery %	RSD% (n=6)	Recovery %	RSD% (n=6)		
Methamidophos	96.3	2.4	110.6	2.8	101.1	14.2		
Acephate	92.5	7.8	92.1	7.5	87.8	9.6		
Dicrotophos	96.2	5.9	103.5	2.0	94.3	5.7		
o,o,o-triethylphosphorothioate	102.0	11.4	112.6	3.4	101.0	3.7		
Dimethoate	103.2	4.7	109.7	4.3	104.4	2.5		
Famphur	106.5	9.5	112.3	2.6	106.5	3.4		
Malathion	104.9	7.3	110.4	1.7	105.6	3.1		
Sulfotep	87.3	8.1	93.4	3.7	92.1	6.4		
Diazinon	94.8	5.8	103.7	1.1	104.1	2.3		
Pyrazophos	104.6	8.7	114.8	0.9	101.6	3.4		
Profenofos	90.7	6.2	100.8	4.3	101.1	6.8		
Ethion	84.9	6.6	101.2	2.4	98.7	8.3		
Chlorpyrifos	91.4	5.6	99.5	7.5	104.7	5.5		
Overall mean	96.6	6.9	105.0	3.4	100.2	5.8		

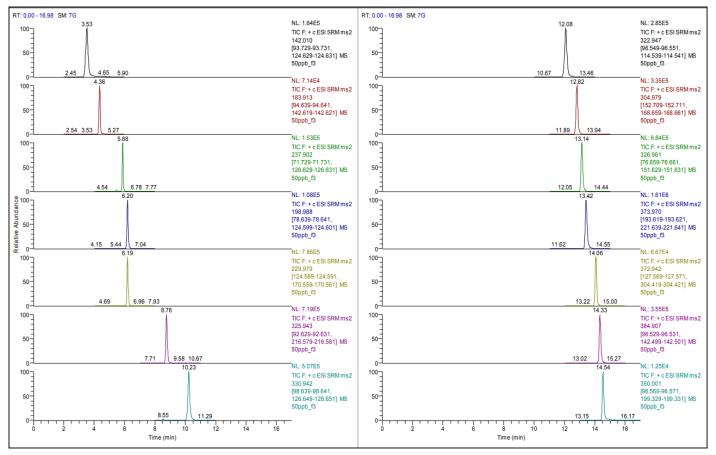


Figure 5. Chromatogram of a 50 ng/mL solvent standard

5104-02-01

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 800.385.3153 • 215.781.9255 www.unitedchem.com Email: methods@unitedchem.com ©UCT, LLC 2015 • All rights reserved

© United Chemical Technologies 2023