Extraction of Phenoxyacetic Acid Herbicides From Soil By LC-MS/MS

UCT Part Numbers

EEC181M6 ENVIRO-CLEAN[®] 6 mL cartridge ECUNIC18 ENVIRO-CLEAN® 1100mg C18/ Universal Cartridge (83mL)

Procedure:

1. Sample Pretreatment

- a) Prepare an acid washed beaker*
- b) Add 10-100 grams of soil sample
- c) Add enough DI H₂O to form a loose slurry
- d) Insert a magnetic stir bar and extract for 15 minutes
- e) Adjust pH to 2 using 50% aqueous sulfuric acid $(H_{2}SO_{4})$
- f) Continue extraction for 15 minutes adjusting pH as needed
- g) Filter sample through previously acidified filter media

Note: Acid washed glassware must be used in this procedure. Soda lime glassware must be avoided as it may interfere with the analysis.

2. Condition C18 SPE Cartridge

a) Add 5 mL CH₃OH and wait 1 minute

b) Add 5 mL DI H_2O

Note: Aspirate at low vacuum setting. Do not let cartridge dry out otherwise repeat steps a) and b)

3. Add Sample

a) Adjust vacuum and load cartridge at 10 mL/minute flow rate

4. Dry Cartridge

b) Dry cartridge for 10 minutes at full vacuum

5. Elute Phenoxyacetic acid Herbicides

- a) Place a clean collection vial in manifold
- b) Add 5 mL of CH₃OH and wait 1 minute
- c) Add a second 5 mL volume of CH_3OH
- d) Adjust vacuum and collect at 1-2 mL/ minute

6. Dry Eluate

- a) Evaporate to dryness at $<40^\circ C$ using N_2
- b) Reconstitute in 100 μL of mobile phase for LC-MS/MS
- c) Inject 10-100 μL

HPLC Analysis and Instrumentation Requirements:

Guard Column: C18 10mm x 2.6mm with 0.5 µm frit

Analytical Column:

- C18 100 mm x 2 mm 5 µm particle ODS-Hypersil
- C18 100 mm x 2 mm 3 µm particle MOS2-Hypersil or equivalent

HPLC/MS Interface: Micromixer 10-µL interface HPLC column system with HPLC post-column addition solvent

Interface: Thermospray ionization interface and source capable of generating both positive and negative ions and have a discharge electrode or filament

Mass Spectrometer System:

- A single quadrupole mass spectrometer capable of scanning from 1 to 1000 amu
- Scanning from 150 to 450 amu in 1.5 sec. or less using 70 volts (nominal) in positive or negative electron modes
- Capable of producing a calibrated mass spectrum for polyethylene glycol (PEG 400, 600, or 800, average mol. wts.) or other compounds
 used as a calibrant
- Use PEG 400 for analysis of chlorinated phenoxyacid compounds. PEG is introduced via the Thermospray interface circumventing the HPLC

Thermospray Temperatures:

Vaporizer Control: 110°C to 130°C Vaporizer Tip: 200°C to 215°C Jet: 210°C to 220°C Source Block: 230°C to 265°C

Recommended HPLC Chromatographic Conditions

Chlorinated Phenoxyacid Compounds

Initial Mobile Phase %	Initial Time (minutes)	Final (minutes)	Final Mobile Phase %	Time (minutes)
75A/25	2	15	40/60	
40A/60	3	5	75/25	10

A=0.1 M ammonium acetate/methanol

Limits of Detection in the Positive and Negative Ion Modes for HPLC Analysis of Chlorinated Phenoxyacid Herbicides and Esters

Compound	Positive Ion Mode Quantitation LOD		Negative Ion Mode Quantitation LOD	
	lon	ng	lon	ng
Dalapon	Not detected	13	141 (M ⁻ H) ⁻	11
Dicamba	238 (M ⁺ NH ₄) ⁺	2.9	184 (M ⁻ HCl) ⁻	3.0
2,4-D	238 (M ⁺ NH ₄) ⁺	120	184 (M ⁻ HCl) ⁻	50
МСРА	218 (M ⁺ NH ₄) ⁺	2.7	199 (M ⁻ 1) ⁻	28
Dichloroprop	252 (M ⁺ NH ₄) ⁺	5.0	235 (M ⁻ 1) ⁻	25
МСРР	232 (M ⁺ NH ₄) ⁺	170	213 (M ⁻ 1) ⁻	12
2,4,5-T	272 (M ⁺ NH ₄) ⁺	160	218 (M ⁻ HCl) ⁻	6.5
2,4,5-TP Silvex	286 (M ⁺ NH ₄) ⁺	24	269 (M ⁻ 1) ⁻	43
Dinoseb	228 (M⁺NH₄⁻NO)⁺	3.4	240 (M-)	19
2,4-DB	266 (M ⁺ NH ₄) ⁺	1.4	247 (M-1)-	110
2,4,5-D, butoxy ethanol ester	321 (M ⁺ H) ⁺	1.4	185 (M ⁻ C ₆ H ₁₃ O1) ⁻	
2,4,5-T,butoxy ethanol ester	372 (M ⁺ NH ₄) ⁺	0.6	195 (M ⁻ C ₈ H ₁₅ O ₃) ⁻	
2,4,5-T, butyl ester	328 (M ⁺ NH ₄) ⁺	8.6	195 (M ⁻ C ₆ H ₁₁ O ₂) ⁻	
2,4-D, ethyl hexyl ester	350 (M ⁺ NH ₄) ⁺	1.2	161(M ⁻ C ₁₀ H ₁₉ O ₃) ⁻	

DCN-900240-146

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 800.385.3153 • 215.781.9255 www.unitedchem.com Email: methods@unitedchem.com ©UCT, LLC 2008 • All rights reserved

