

EPA Method 8270: Determination of Semi-volatile Organic Compounds in Water using Solid Phase Extraction and GC/MS

UCT Part Numbers: EC82701M15 - 1000 mg 8270 sorbent/15 mL cartridge (≤ 500 mL sample) EU52112M6 - 2000 mg activated carbon/6 mL cartridge (≤ 500 mL sample) EC82702M15 - 2000 mg 8270 sorbent/15 mL cartridge (> 500 mL sample) EU52113M6 - 3000 mg activated carbon/6 mL cartridge (> 500 mL sample) AD0000AS - Cartridge adaptor VMFSTFR12 - Large volume sample transfer tubes VMF016GL - 16 position glass block manifold VMF02125 - 12 position large volume collection rack RFV1F15P - 15 mL reservoirs with 1 frit, 10 micron porosity ECSS25K - Sodium sulfate, anhydrous, ACS grade, granular, 60 mesh GCLGN4MM-5 - GC liner, 4 mm splitless gooseneck

EPA method 8270 allows the use of liquid-liquid extraction (LLE) and solid phase extraction (SPE) to extract semi-volatile organic compounds (SVOCs) in aqueous samples and TCLP leachates. LLE requires multiple extractions at two different pH values, consumes large amounts of organic solvents, and causes emulsion when real world dirty samples are extracted.

This application note outlines a reliable, efficient, and cost-effective SPE method utilizing two stacked SPE cartridges, UCT's EC8270 and activated carbon cartridges for the extraction of SVOCs in water and TCLP samples. Prior to extraction, samples are dechlorinated and adjusted to pH < 2, then passed through the SPE system, the 8270 SPE cartridge retains the majority of the target analytes including acids, bases, and neutrals with mid to high hydrophobicity, while the carbon cartridge connected downstream will capture a few very polar compounds*, such as *1,4-dioxane*, n-nitrosodimethylamine, n-nitrosomethylethylamine, methyl methanesulfonate, ethyl methanesulfonate, and1-Nitrosopyrrolidine. High sample throughout can be achieved by extracting multiple samples simultaneously using a multi-port SPE manifold.

*: Carbon cartridge is NOT needed if none of the very polar analytes is being analyzed, such as for the TCLP SVOCs list.

SPE Procedure:

1. Sample Pretreatment

- a) Dechlorinate sample with 80 mg/L of sodium thiosulfate if free chlorine presents.
- b) Adjust sample pH to < 2 using 6N HCl.
- c) Spike with surrogates, and target analytes for fortified samples.

Tip 1: The spiking solutions should be prepared in water miscible solvents, such as methanol, acetonitrile, or acetone.

2. SPE System Setup

- a) Connect the carbon cartridge (EU52112M6 or EU52113M6 depending on sample volume) to the end of the 8270 cartridge (EC82701M15 or EC82702M15 depending on sample volume) using a cartridge adaptor (AD0000AS).
- b) Insert a loose plug of deactivated glass wool into the 8270 cartridge to prevent sorbent clogging caused by samples with high particulate content.
- c) Attach the connected SPE cartridges to the SPE manifold (VMF016GL).

Tip 2: The carbon cartridge is not needed if very polar analytes, such as 1,4-dioxane, nnitrosodimethylamine, n-nitrosomethylethylamine, methyl methanesulfonate, ethyl methanesulfonate, and 1-Nitrosopyrrolidine are not being analyzed.

3. Cartridge Conditioning

- a) Wash the SPE cartridges with 15 mL of dichloromethane (DCM), soak 1 min, and apply full vacuum for 1 min.
- b) Condition the SPE cartridges with 10 mL of methanol. Draw most of the way through the column leaving a thin layer (about 0.5 cm) of solvent above the frit. Do not allow cartridges to go dry from this step until instructed to do so in the cartridge drying step.
- c) Equilibrate the cartridges with 10 mL of reagent water and 10 mL of 0.05N HCl.

4. Sample Loading

- a) Attach the large volume sample delivery tube (VMFSTFR12) to the top of the 8270 cartridge, and insert the stainless steel end of the tube into the sample bottle.
- b) Adjust vacuum for a fast dropwise sample flow (about 10-15 mL/min), and draw the entire sample through.

5. Washing and Drying

- a) Rinse the sample bottle with 10 mL of reagent water, and apply the rinsate to the SPE cartridges.
- b) Disassemble the transfer tube and the connected SPE cartridges. Dry the 8270 cartridge under full vacuum for 10 min, and the carbon cartridge for 15 min.

Tip 3: Remove as much water as possible, wet sorbents result in low analyte recovery.

6. Analyte Elution

- a) Insert the collection rack (VMF02125) with 40-60 mL glass vials into the manifold.
- b) Elute the SPE 8270 and carbon cartridges separately. Apply elution solvent to the SPE cartridges, draw 1/3 through, soak 1-2 min, and then draw the remaining solvent through the cartridge in a slow dropwise fashion. Leave full vacuum on for 1 min after each elution.

	10 mL 1:1 acetone:n-hexane
	(bottle rinse added to 8270 cartridge using transfer tube)
8270 Cartridge	10 mL DCM
	3 - 4 mL ammonium hydroxide (28-30%), drain to waste
	3 x 7 mL DCM
Carbon Cartridge	5 x 3 mL DCM

Tip 4: Bottle rinse is critical for good recovery of PAHs, which tend to adsorb on the glass wall.

7. Eluate Drying

- a) Dry the eluates using a 15-mL reservoir (or a glass funnel stopped with glass wool) holding about 15-20 g of anhydrous Na₂SO₄, pre-rinse the Na₂SO₄ with 10 mL of DCM.
- b) Insert the collection rack with 40-60 mL glass vials into the manifold to collect the dried eluates.
- c) Pass the eluates through the Na_2SO_4 bed.
- d) Rinse the eluate vials with 2 x 5 mL of DCM, transfer the rinses to the Na₂SO₄ bed.

Tip 5: If Na₂SO₄ appears greenish, rinse with more solvent until it turns white.

8. Concentration

- a) Concentrate the eluates to 0.7-0.9 mL under a gentle stream of N_2 at 40 °C.
- b) Add internal standards, transfer the extract to a 2-mL auto-sampler vial, and adjust the final volume to 1 mL.
- c) The samples are ready for GC/MS analysis.

GC/MS Method

GC/MS	Agilent 6890N GC coupled to a 5975C MSD
Injection	1 μL splitless injection at 250 °C, split vent of 30 mL/min at 1 min
GC Liner	4 mm splitless gooseneck (GCLGN4MM-5), packed with deactivated glass wool
GC Column	Restek Rxi [®] -5sil MS 30m x 0.25mm, 0.25µm with 10m integrated guard column
Carrier Gas	Ultra high purity helium at a constant flow of 1.5 mL/min
Oven Temp. Program	Initial temperature at 40 °C, hold for 3 min; ramp at 15 °C/min to 240 °C; ramp at 6 °C/min to 310 °C; and hold for 2 min
MSD Temp.	Transfer line 280 °C; Source 250 °C; Quadrupole 150 °C

Full Scan	35 - 500 amu
Range	

Recovery and RSD in Laboratory Fortified Blanks (500 mL sample fortified with 40 μ g/L of 139 analytes and 6 surrogates)

Compound	Ave Recovery%	RSD% (n=4)
1,2,4,5-Tetrachlorobenzene	99.5	4.1
1,2,4-Trichlorobenzene	88.5	5.7
1,2-Dichlorobenzene	90.3	3.9
1,3,5-Trinitrobenzne	124.4	2.8
1,3-Dichlorobenzene	85.8	2.8
1,4-Dichlorobenzene	89.1	1.1
1,4-Naphthalenedione	95.3	4.3
1-Chloronaphthalene	112.2	2.7
1-Methyl fluorene	86.9	0.9
1-Methyl phenanthrene	89.8	1.3
1-Methylnaphthalene	102.1	2.7
1-Naphthalenamine	112.3	4.7
1-Nitrosopiperidine	88.9	5.8
1-Nitrosopyrrolidine	91.8	7.2

2,3,4,6-Tetrachlorophenol	103.2	0.9
2,3-Dichloroaniline	91.4	0.6
2,4,5-Trichlorophenol	123.5	4.7
2,4,6-Trichlorophenol	106.5	3.6
2,4-Dichlorophenol	97.3	6.5
2,4-Dimethylphenol	99.0	6.4
2,4-Dinitrophenol	122.4	2.0
2,4-Dinitrotulene	112.0	1.7
2,6-Dichlorophenol	113.3	0.7
2,6-Dinitrotoluene	106.3	2.3
2-Acetylaminofluorene	109.0	6.5
2-Chloronaphthalene	96.9	2.8
2-Chlorophenol	99.4	2.9
2-Isopropyl naphthalene	73.1	0.1
2-Methylnaphthalene	101.2	4.9
2-Methylphenol	97.6	6.7
2-Naphthalenamine	130.5	2.7
2-Nitroaniline	107.5	3.6
2-Nitrophenol	98.2	5.9
2-Picoline	74.4	5.0
3&4-Methylphenol	104.2	6.6
3,3'-Dichlorobenzidine	72.3	11.4
3,6-Dimethyl phenanthrene	90.6	0.9
3-Methylcholanthrene	106.5	1.4
3-Nitroaniline	100.4	4.9
3-Nitrophenol	99.5	8.2
4,4'-DDD	94.4	0.8
4,4'-DDE	91.8	0.4
4,4'-DDT	94.0	0.3
4,6-Dinitro-2-methylphenol	116.8	4.5
4-Aminobiphenyl	103.8	13.5
4-Chloro-3-methylphenol	111.7	6.3
4-Chloroaniline	105.0	3.9
4-Chlorophenylphenylether	99.5	3.0
4-Nitroaniline	114.9	4.6
4-Nitrophenol	97.2	3.0
5-Nitro-o-toluidine	94.7	4.0
7,12-Dimethyl benz[a]anthracene	99.9	6.1
Acenaphthene	100.1	1.3
Acenaphthylene	102.6	0.6
Acetophenone	101.8	7.4

Aldrin	89.5	0.8
alpha lindane	90.1	0.2
Aniline	90.0	3.2
Anthracene	109.7	1.1
Azobenzene	105.5	5.2
Benz[a]anthracene	103.3	6.2
Benzidine	66.8	14.0
Benzo[a]pyrene	99.3	2.1
Benzo[b]fluoranthene	99.4	7.0
Benzo[ghi]perylene	104.2	1.1
Benzo[k]fluoranthene	108.1	5.4
Benzoic acid	115.0	4.7
Benzyl alcohol	72.9	12.9
Benzyl butyl phthalate	111.8	6.0
beta lindane	95.2	1.1
Bis(2-ethylhexyl) phthalate	113.2	2.0
Bis[2-chloroethoxy]methane	91.0	7.8
Bis[2-chloroethyl]ether	88.5	3.0
Bis[2-chloroisopropyl]ether	87.3	4.5
Bromophenoxybenzene	99.6	4.8
Carbazole	109.6	3.3
Chlorobenzilate	116.3	9.4
Chrysene	103.3	1.2
delta lindane	95.2	0.8
Diallate (cis & trans)	104.7	4.5
Dibenz[ah]anthracene	108.8	2.5
Dibenzofuran	102.0	0.6
Dibutyl phthalate	114.6	6.2
Dieldrin	94.5	0.7
Diethyl phthalate	110.4	1.2
Dimethoate	96.6	0.7
Dimethyl phthalate	110.3	1.3
Di-n-octyl phthalate	116.6	5.9
Dinoseb	121.9	1.7
Diphenylamine	109.9	4.8
Disulfoton	87.0	0.6
Endosulfan I	93.8	0.7
Endosulfan II	96.5	0.5
Endosulfan sulfate	96.2	0.7
Endrin	97.4	1.0
Endrin aldehyde	93.4	0.5

Ethyl methanesulfonate	92.5	3.7
Famphur	109.3	1.2
Fluoranthene	105.8	6.1
Fluorene	103.7	2.6
gamma lindane	93.1	1.3
Heptachlor	88.1	1.0
Heptachlor epoxide	93.4	0.9
Hexachlorobenzene	101.3	6.1
Hexachlorobutadiene	85.0	1.0
Hexachloroethane	92.6	6.0
Hexachloropropene	72.1	1.1
Hexachorocyclopentadiene	85.9	3.1
Indeno[123-cd]pyrene	103.2	2.5
Isodrin	105.1	7.2
Isophorone	91.0	6.8
Isosafrole (cis & trans)	102.9	6.1
Methyl methanesulfonate	70.8	3.5
Methyl parathion	96.6	0.4
Naphthalene	97.2	2.3
Nitrobenzene	94.0	7.2
N-nitro-di-n-propylamine	99.3	6.3
N-nitroso di-n-butylamine	99.9	4.7
N-nitrosodiethylamine	89.4	3.7
N-nitrosodimethylamine	68.8	3.0
N-nitrosomethylethylamine	87.4	2.5
o,o,o-Triethylphosphorothioate	90.8	0.4
o-Toluidine	91.4	9.7
Parathion	95.8	0.7
p-Dimethylaminoazobenzene	91.5	10.5
Pentachlorobenzene	90.9	1.0
Pentachloroethane	86.0	3.8
Pentachloronitrobenzene	104.3	4.2
Pentachlorophenol	109.3	3.3
Phenacetin	116.4	3.9
Phenanthrene	108.0	0.4
Phenol	56.2	4.2
Phorate	86.7	0.1
Pronamide	111.2	5.2
Pyrene	109.1	8.5
Pyridine	46.1	8.0
Safrole	90.7	4.3

Sulfotep	92.5	0.8
Thionazin	95.1	0.7
Surrogates		
2-Fluorophenol (S)	87.2	0.6
Phenol d6 (S)	59.1	0.4
Nitrobenzene d5 (S)	94.3	1.0
2-Fluorobiphenyl (S)	81.5	0.5
2,4,6-Tribromophenol (S)	95.4	0.2
p-Terphenyl d14 (S)	97.5	1.0

Chromatogram of an LFB Fortified at 40 μ g/L

5108-04-01

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT, LLC 2011 • All rights reserved